SB Termo Solar

Ideal to cooperate with a central heating boilers and solar collectors

SB Termo Solar is a double coil cylinder. Storage capacity: 200, 250, 300, 400 liters.

SB Termo Solar is a double coil cylinder with an extra entries for e.g external heat exchanger/cylinder.

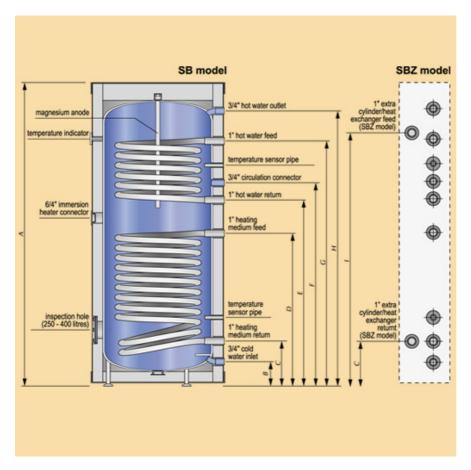
Storage capacity: 200, 250, 300, 400 liters.

Key advantages

The most modern enamelling technology

Kospel boasts the most modern fully automatic dry enamelling line for manufacturing hot water cylinders. The dry enamelling technology is an advanced method of applying enamel with optimal thickness over an entire inner surface of cylinder. This method as compared to traditional wet enamelling technology improves quality of enamel coat and ensures long-lasting cylinder performance.

Due to the fining and recovery processes at the stage of cleaning tank and enamelling it the new technology guarantees production with maximum materials saving. The manufacturing process is conducted in accordance with the newest european ecological standards.


Highly effective thermal insulation

Effective thick thermal insulation minimises heat losses from the cylinder. Its rigid silver colour enclosure ensures aesthetic look and provides protection against mechanical damages.

Optional equipment

GRBT-1.4kW immersion heater for cylinders of 200, 250, 300, 400 litres.

GRBT-2.0kW immersion heater for cylinders of 200, 250, 300, 400 litres.

Technical data

Туре			SB-200 SBZ-200	SB-250 SBZ-250	SB-300 SBZ-300	SB-400 SBZ-400
Capacity		I	200	250	300	400
Rated pressure		MPa	tank 0,6 / coil 1,0			
Surface area of coil lower /upper		m²	1,1 / 0,75	1,0 / 0,8	1,5 / 0,8	1,7 / 0,9
Power of coil lower / upper*		kW	40 / 29	37 / 31	53 / 31	58 / 34
24hrs electricity losses**		kWh	2,0	2,1	2,7	2,4
Dimensions	Diameter	- mm	595	695		755
	А		1610	1379	1614	1660
	В		127			127
	С		258	241		241
	D		813	628	852	856
	E		903	746	980	986
	F		993	836	1070	1076
	G		1290	1079	1313	1319
	Н		1464	1230	1464	1498
	I		1334	1116	1350	137

^{*} Following parameters: $80/10/45^{\circ}$ C (heating water temp./ feed water temp./ domestic water temp.) flow rate of heating water through the coil $3.0m^3/h$.

^{**} Electricity losses counted at water temp. of 60°C